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Abstract. Real-life datasets often contain small clusters of unusual sub-
populations. These clusters, or ‘hot spots’, are usually sparse and of spe-
cial interest to an analyst. We present a methodology for identifying hot
spots and ranking attributes that distinguish them interactively, using
visual drill-down Self-Organizing Maps. The methodology is particularly
useful for understanding hot spots in high dimensional datasets. Our
approach is demonstrated using a large real life taxation dataset.
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1 Introduction

The complexity of knowledge contained in large datasets is often easier to explore
by grouping similar entities together, which is known as cluster analysis. For ex-
ample, clustering of customers sharing similar characteristics generally makes it
easier to devise marketing strategies. Self-Organizing Maps (SOMs) [1] are popu-
larly used in cluster analysis for several reasons. First, SOMs topologically map
high-dimensional data into a two-dimensional map with similar entities being
placed close to each other. Second, SOMs produce a smaller but representative
dataset that exhibits the distribution of the original dataset. Third, SOMs offer
various map visualizations that allow non-technical users to explore a dataset.

In real datasets cluster sizes are normally not equal and clusters do not have
the same level of interest for a user. The cluster distribution is often very skewed
with interesting clusters being a small fraction of the full dataset. Also, variance
of the items at the tail/margin of the normal distribution of a population is also
larger compared to the center of the distribution. Thus it is common to find
large dense clusters for common sub-populations, and small sparse clusters that
might be of interest. In a taxation context, for example, this could be a small



group of tax entities who have unusual tax debts, while in an insurance context
this may be a small group of high claiming clients.

Hot Spots aims to identify important or interesting groups in very large
datasets [2] using a combination of clustering and rule induction. By under-
standing attributes that distinguish these small and interesting clusters (hot
spots), businesses can improve their processes, such as the choice of treatment
strategies for ensuring tax compliance. We advance the hot spots methodology
using attribute selection measurement and visualization. With our methodology,
analysts can identify and understand distinguishing characteristics of hot spots
through interactive visualizations and by performing drill-down exploration.

2 Hot Spots Analysis

Hot Spots data mining identifies key areas in very large datasets that are inter-
esting to an analyst [2]. A dataset is clustered to identify between 10 and 1,000
clusters. Each entity is then labelled with the cluster it is assigned to. Supervised
learning (e.g., tree induction) is used to generate distinguishing descriptions for
each cluster. The resulting tree is pruned and transformed into a rule set. Finally,
the interestingness of the clusters are evaluated. As it is difficult to formalize in-
terestingness, this is domain dependent and therefore, such an analysis is often
exploratory and evolutionary [3].

There are several drawbacks with the Hot Spots methodology. When corre-
lated attributes exist in a dataset only one of them will be used in the rule set to
describe a cluster, reducing the description of the clusters. Also, the supervised
learning step is highly dependent on the results of the previous clustering step,
and also on the clustering technique employed (usually k-means). When a large
number of clusters is chosen some clusters might have quite similar characteris-
tics, yet a small number of clusters would reduce the required detail extracted
from the dataset. Exploring for the right number is difficult.

3 Self-Organizing Maps

A SOM is an artificial neural network that performs unsupervised competi-
tive learning [1]. Importantly, SOMs can be visualized and be used to explore
high-dimensional data spaces through a non-linear projection onto a lower-
dimensional manifold, most commonly a 2-D plane [4]. Artificial neurons are
arranged on a low-dimensional grid, with each neuron represented by an n-
dimensional prototype vector (with n the dimension of the input data) and
connected to its neighbouring neurons.

Exploring for Hot Spots we find that interesting clusters are usually located
at the border of the map because of the topological ordering property. However,
SOMs have a border effect problem [4] where the neighbourhood definition is not
symmetric at the borders of the map—the number of neighbours per unit on the
borders and corners of the map is not equal to the number of neighbours in the
middle of the map. As the density estimation for the border units is different



to the units in the middle of the map, the tails of the marginal distributions of
variables (normally located at border units) are less well represented than their
centers [4]. A visual drill-down approach using a SOM can alleviate this [5]. Here,
several nodes of a region can be selected by an analyst for interactive drill down
to target regions of interest.

Furthermore, SOMs tend to merge small sparse clusters. This further reduces
the detail in the analysis. Increasing the map size of a SOM gives a better
resolution map but with significant additional computational cost.

4 SOM Hot Spot Profile Analysis Methodology

The contribution of this paper is the development of a methodology to perform
profile analysis of hot spots. We present this as data pre-processing, map training,
hot spots identification, profile analysis, drill-down, and sub-map analysis.

4.1 Data Pre-Processing and Map Training

Data pre-processing is important prior to training any maps [5]. SOMs only han-
dle numeric attributes—each non-numeric (categorical) attribute is transformed
into a set of numeric attributes, encoding each categorical value into a binary in-
dicator (1 or 0). Normalization of the numeric attributes ensures that attributes
with larger ranges won’t have an unduly larger influence on the distance calcu-
lations [6].

Linear initialization is recommended for initialising a SOM, resulting in an
order of magnitude improvement in time taken for learning compared to random
initialization [4]. Also, we train a SOM in two phases using batch training [4].
This combined linear initialization and batch training produces the same map
each time the learning process is repeated (random initialization might produce
different orientations of the map). Batch training can also utilize multi-processor
environments to speed up the training process. The map size, training length,
initial and final radius are chosen by considering a best practice approach [7].

4.2 Identifying Hot Spots in Self-Organizing Maps

Hot spots in SOMs can be identified by two approaches: first by using the dis-
tance matrix visualizations and second by analysts’ feedback based on com-
ponent plane visualizations. Noting that entities in hot spots are usually less
homogeneous because they are often located at the tail of distributions, these
regions can be identified using the distance matrix. Distance-matrix based vi-
sualizations, such as u-matrix visualization [8], show distances between neigh-
bouring nodes using a colour scale representation on a map grid. As shown in
Fig. 1, white indicates a small distance between a node and its neighbouring
nodes while black indicates a large distance between a node and its neighbours4.

4 SOM graphics are best in colour but printing requirements necessitated gray scale.
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(b) the sub-map of region ‘C’

Fig. 1. Distance matrix (median of a node to its neighbours [5]) visualization.

The distance matrix visualization can be used to identify borders between clus-
ters. Large distances that show highly dissimilar features between neighbouring
nodes divide clusters, i.e. the dense parts of the map with similar features (white
regions) [8].

Distance-matrix visualizations can be used to acquire the initial cluster struc-
ture of the dataset. By using this visualization, an analyst can see the cluster
structure of the dense part of a map. An example is the cluster in the center
of the map (marked ‘A’) in Fig. 1(a). However, it is difficult to see the cluster
structure of the sparse regions of the lower-right and the upper-left corners of
the map (marked ‘B’ and ‘C’).

The distance matrix visualizations in Fig. 1 show homogeneous (low varia-
tion) groups with smaller neighbour distances (white regions) and high variation
groups (dark regions). Regions with larger neighbour distances can be further
investigated through component plane visualizations. In Fig. 1(a) two hot spots
are identified according to the above criteria (the regions marked ‘B’ and ‘C’).

4.3 Profile Analysis of Hot Spot

Descriptive statistics (e.g., average values) of entities mapped to a hot spot
provides a simple characterization. However, this approach does not provide an
analyst with insight, as it is difficult to find the average value with respect to
the spread of the values of the whole dataset.

Component plane visualizations can be used to show the spread of values
of a certain component of all prototype vectors in a SOM [9]. The value of
a component in a node is the ‘average’ value of entities in the node and its
neighbours according to the neighbourhood function. The colour coding of the
map is created based on the minimum (white) and the maximum values (black)
of the component of the map. When analyzing the characteristics of hot spots in
high dimensional datasets, it is difficult to identify components which distinguish
hot spots from the remaining population by visualizing all component planes,
except by ranking their importance, as shown in Fig. 2(a).

An analyst is supported in our methodology by sorting the component planes
by the importance of the attributes that distinguish a hot spot from the rest of
the population. This ranking can be done using an attribute selection mea-
sure [6], such as information gain or gain ratio. As attributes in a SOM are nu-
meric, a supervised discretization measure [6], such as entropy-based discretiza-



(a) unsorted component planes (b) Top six component planes sorted
based on region ‘C’

Fig. 2. Component planes. Six of 90 attributes are shown.

tion, should be applied to the numeric attributes before ranking. To rank at-
tributes by their importance, the nodes of the selected region are labeled as ‘hot
spot’ and the rest as ‘non-hot spot’. An analyst can then choose an attribute
selection measure for attribute importance based on the prototype vectors. The
component planes are then ordered by this rank. Fig. 2(b) shows the sorted com-
ponent planes of the hot spot of region ‘C’ in Fig. 1(a) using the Gain Ratio.
With this ordering, an analyst is able to identify the attributes that distinguish
a hot spot from the rest of the population.

As a SOM produces a smaller but representative dataset, the prototype vec-
tors can be used as an approximation of the whole dataset. Efficient computation
allows an analyst to explore the profile of any region of the map interactively.

4.4 Drill Down and Visualizing Hot Spots

The analyst has chosen the region of the top level map of interest, allowing a
sub-map to be trained to gain more detail for these sparse regions. In training
the sub-map, consistency of interpretation of the visualization of the sub-map
needs to be preserved while maintaining the sub-map quality with respect to the
sub-population [5].

For consistent interpretation of the visualization of the sub-map, the orien-
tation of the map is preserved and the colour coding is made consistent [5]. A
drawback of using linear initialization for the sub-map based on the entities in
the sub-map is that its orientation might be different to the orientation of the
top level map. For example, entities located at the bottom-right corner of the
top level map might be located at the top-left corner as we drill down, partic-
ularly when the two largest principal components of the whole population and
the sub-population are different.

We propose that the top level map be used as the initial map of the sub-
map [5]. The radius of the rough phase training must be wide enough to avoid
subregions of the map becoming empty. We find that setting the initial radius
of the rough phase to be half of the longest side and the initial radius of the fine
tune phase to be a quarter of the longest side works well.



4.5 Visualization and Analysis of the Sub-Map

Sub-maps are also visualized using the distance matrix and component plane
visualizations introduced above. To display the distribution of values of the sub-
map with respect to the whole population, we use the colour map for the whole
population to visualize the component planes of the sub-map. In other words,
black in the sub-map visualizations is used for the maximum value of the compo-
nent of the top level map, not necessarily the maximum value of the component
of the sub-map. As the sub-map has better quality in terms of quantization error
(more homogeneous within a node), the component value in the sub-map might
exceed the maximum value of the top-level map. The colour for such values are
also black and this needs to be kept in mind in reviewing the visualization.

With sub-regions consisting of considerably fewer data vectors the training
of the sub-map is considerably faster. An analyst is thus able to interactively
explore hot spots once the top level map has been trained. The sub-map can be
further explored using the methods introduced in Sects. 4.2 and 4.3.

5 Results and Discussion

Our new visual SOM drill-down approach has been applied to the task of ex-
ploring taxpayer compliance for the Australian Taxation Office (ATO), using
a de-identified taxpayer dataset. Here, we provide aggregate indicative results
that demonstrate the effectiveness of our methodology, without breaching the
confidentiality of the data or the discoveries made.

The analysis is motivated by the need to understand the logic and structures
that drive taxpayers’ compliance behaviour (behavioural archetypes). The idea
is to construct ‘psychographic groups’ [10] by using data mining. Understanding
the difference between low and high risk taxpayers is important.

The dataset consists of 6.5 million entities with 90 attributes that reflect tax-
payer behaviour. The attributes can be categorized into: income profile (details
of income sources), propensity to lodge correctly and on time (lodgement profile),
propensity to pay (debt profile), market segments, demographics, socio-economic
indicators for areas (SEIFA) [11], and participation in tax avoidance schemes.
These attributes were selected by domain specialists. The dataset was normal-
ized and categorical attributes were transformed into numerical attributes.

A map size of 15x20 units with a hexagonal lattice structure [4] was chosen.
The initial radius of the rough phase was 8 and for the fine tuning phase it was 4.
The training length for the rough phase was 6 iterations and for the fine tuning
phase 10 iterations. The training of the top-level map took about 5 hours under
Debian GNU/Linux with two AMD64 dual-core 3GHz processors and 16 GB
memory using our Java-based SOM Toolbox.

In interpreting multiple visualizations it must be understood that the visu-
alizations are linked by position or by colour. A visualization of the same map is
linked by position so that the position of each entity remains the same in each
visualization. Figs. 1(a), 3(a), and 3(b) are linked by position. The visualization



Component plane: Cnt_IT_Debt_Cases
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(a) ‘number of debt cases’
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(b) ‘number of debt cases paid’

Fig. 3. Component plane of the whole population [5]

of the top-level map is linked by colour to the sub-map so that the colours of
the top level map are directly used for the sub-maps.

The visualization of the dataset distance matrix can be seen in Fig. 1(a). The
‘common’ population in real life datasets is usually located in the center of a
map. In Fig. 1(a), the entities in the center of the map of the whole population
are relatively homogeneous. According to the criteria presented in Sect. 4.2, there
are two hot spots, located in the top-left corner (‘B’) and in the bottom-right
corner (‘C’). Based on the ranking of the component planes (Sect. 4.3) using
gain ratio as the attribute selection measure, hot spot ‘C’ can be distinguished
by the following attributes in decreasing importance: existing debt, total num-
ber of problem income tax returns, participation in tax avoidance schemes, net
capital gain tax, activity statement lodgement behaviour, and the balance of
the tax return (Fig. 2(b)). Hot spot ‘B’ can be distinguished by the attributes:
allowances, dividends, and total income. Based on these rankings, ‘C’ is more
interesting, and further explored.

The entities in ‘C’ have highly dissimilar characteristics (Fig. 1(a)). How-
ever, at this level, it is difficult to differentiate the debt behaviour, as shown in
Figs. 3(a) and 3(b). Therefore, to see the debt behaviour in detail, we drill down
into the lower-right corner of the top level map (Sect. 4.4).

At this level we can also use the distance matrix visualization (Fig. 1(b)) to
highlight the hot spots in this sub-map, which are located along the bottom of
the map. It is also interesting to note that the hot spot of the sub-map consists
of entities that are involved in tax avoidance activities. Furthermore, this group
has characteristics of longer debt age, higher levels of compliance enforcement,
and lower percentage of cases paid.

6 Conclusion and Future Work

We have introduced a methodology for understanding characteristics of hot spots
in large real world datasets, such as from the taxation domain. Based on our
experiments, the methodology is effective for hot spots exploration, offering in-
teractive visualizations that are easy to understand. An analyst is able to identify
discriminating characteristics of hot spots. As a SOM produces a considerably
smaller-sized set of prototype vectors, it allows an efficient use of attribute se-
lection measurements. In using the methodology introduced here analysts have
the flexibility to explore regions or clusters based on map visualization, and are



able to drill-down into sparse regions or clusters. Analysts are now able to select
regions or clusters based on their business needs.

This work is part of a larger research project where we are interested in
observing the dynamics of hot spots over time, such as to find entities who are
moving in or out of hot spots. Such knowledge will be valuable as an analyst can
derive strategies to encourage or deter moves in or out of the hot spots (which
might be regions of non-compliance or of high compliance). It can also be used
to evaluate the effectiveness of such business strategies over time.
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