Mining the Data Stream

Graham Williams

CSIRO Data Mining GPO Box 664, Canberra 2601, Australia datamining.csiro.au Graham.Williams@csiro.au

Plenary Presentation to Hybrid Intelligent Systems 16 December 2003

Hybrid Intelligent Systems 2003

◆□ ▶ ◆日 ▶ ◆日 ▶ ◆日 ▶ 三日 Convright ② 2003, Graham L Williams

CSIRO Data Mining

- CSIRO Australian Government research organisation
- Applied research delivering to industry
- CSIRO Mathematical and Information Science Mathematicians, Statisticians, Computer Scientists
- CSIRO Data Mining established in 1994
 Machine learning, database, visualisation, statistics
- Industry
 - Government
 - Insurance
 - Fraud
 - Security
 - Science
 - Health

xploratory

CSIRO

ledicare

Hybrid Intelligent Systems 2003

○ PC 単語 (語) (語) (語) (日)

Moving Forward 0 00

Data Streams

Data Supply Mining The Stream

◆□ → ▲ 클 → ▲ 클 → 클 = Copyright © 2003, Graham I, Williams

Moving Forward 0 00

Data Streams

Data Supply Mining The Stream

Data Mining

Doing Data Mining Technology for Intelligent Data Mining Transactions to Systems

Hybrid Intelligent Systems 2003

Moving Forward 0 00

Data Streams

Data Supply Mining The Stream

Data Mining

Doing Data Mining Technology for Intelligent Data Mining Transactions to Systems

Moving Forward

Temporal Nature of Data Streams Ready, Efficient, Communicating Agents

Moving Forward 0 00

Data Streams

Data Supply Mining The Stream

Data Mining

Doing Data Mining Technology for Intelligent Data Mining Transactions to Systems

Moving Forward

Temporal Nature of Data Streams Ready, Efficient, Communicating Agents

Hybrid Intelligent Systems 2003

 ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ □ □

 Copyright (© 2003, Graham J, Williams

More Data Than We Know What To Do With

- Australian Health Transactions: 700 thousand per day
- Financial Transactions: 1 million per day?
- Telecom Transactions: 20 million per day?
- Health Insurance Commission: terabyte data storage
- Australian Taxation Office: 24 databases, multiple tables

Drowning in the Data Stream

Stream Data:

- Continuously becoming available
- Sequentially ordered arrival of data
- Generally arriving in quick succession
- Large amounts and perhaps limited storage
- Possibly distributed sources (e.g., sensor data)
- Foundation: database queries for data streams

Examples

- Telecommunications
- Financial transactions
- Web clicks
- Passenger arrivals
- Electronic health records
 - Infectious outbreaks SARS
 - Adverse drug reactions interactions
 - Insurance cost blowouts pharmaceuticals

Hybrid Intelligent Systems 2003

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三国国 のへで Copyright © 2003, Graham J. Williams

Data Mining

• The non-trivial extraction of novel, implicit, and actionable knowledge from large databases

Hybrid Intelligent Systems 2003

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三国国 のへで Copyright © 2003, Graham J. Williams

Data Mining

• The non-trivial extraction of novel, implicit, and actionable knowledge from large databases and in a *timely* manner.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三国国 のへで Copyright © 2003, Graham J. Williams

Data Mining

- The non-trivial extraction of novel, implicit, and actionable knowledge from large databases and in a *timely* manner.
- Anytime Data Mining give me the answer now.
 - Data exploration
 - Data visualisation
 - Very large data extractions
 - Data analysis
 - Hypothesis generation
 - Model building.

Data Characteristics

- Administrative, transaction data
- 10 to 200 features
- Multiple entities
- Typical Examples:
 - Pathology (Health Insurance)
 - 37 million transactions (3 years of data)
 - 80 pathology laboratories
 - 20 thousand doctors
 - 3 million patients
 - 50 features
 - Queensland Linked Health Dataset
 - 5 years of data 100 million (MBS), 60 million (PBS), 3 million (Hos) 1 million patients, \$50 billion 80 features

Moving Forward 0 00

How to Data Mine?

- Are we currently mining data in the best possible way?
- Using tools and techniques developed for different tasks?
- So far the track record is quite good, but ...?
- Should we take a fresh look at data mining ...?

Data Streams

Data Supply Mining The Stream

Data Mining

Doing Data Mining Technology for Intelligent Data Mining Transactions to Systems

Moving Forward

Temporal Nature of Data Streams Ready, Efficient, Communicating Agents

- Several million transactions annually
- Consider more than the traditional small number of factors
- Hot Spots: Cluster ⇒ Rule Induction ⇒ Interestingness (Williams, Huang, Al97)

- Several million transactions annually
- Consider more than the traditional small number of factors
- Hot Spots: Cluster ⇒ Rule Induction ⇒ Interestingness (Williams, Huang, Al97)

315

Image: A matrix

- Several million transactions annually
- Consider more than the traditional small number of factors
- Hot Spots: Cluster ⇒ Rule Induction ⇒ Interestingness (Williams, Huang, Al97)

- Several million transactions annually
- Consider more than the traditional small number of factors
- Hot Spots: Cluster \Rightarrow Rule Induction \Rightarrow Interestingness (Williams, Huang, AI97)

315

Image: A marked black

- Several million transactions annually
- Consider more than the traditional small number of factors
- Hot Spots: Cluster ⇒ Rule Induction ⇒ Interestingness (Williams, Huang, Al97)

- Universal health coverage since 1975
- Terabytes of patient claims in storage in Canberra
- Inappropriate Provider Practices (neural networks)
- Public Fraud (including doctor shoppers)
- Hot Spots: Cluster \Rightarrow Rule Induction \Rightarrow Interestingness

- Universal health coverage since 1975
- Terabytes of patient claims in storage in Canberra
- Inappropriate Provider Practices (neural networks)
- Public Fraud (including doctor shoppers)
- Hot Spots: Cluster \Rightarrow Rule Induction \Rightarrow Interestingness

Day of Service \rightarrow Day of Claim

Copyright © 2003, Graham J. Williams

315

- Universal health coverage since 1975
- Terabytes of patient claims in storage in Canberra
- Inappropriate Provider Practices (neural networks)
- Public Fraud (including doctor shoppers)
- Hot Spots: Cluster \Rightarrow Rule Induction \Rightarrow Interestingness

Day of Service \rightarrow Day of Claim

Copyright © 2003, Graham J. Williams

315

- Universal health coverage since 1975
- Terabytes of patient claims in storage in Canberra
- Inappropriate Provider Practices (neural networks)
- Public Fraud (including doctor shoppers)
- Hot Spots: Cluster \Rightarrow Rule Induction \Rightarrow Interestingness

- Universal health coverage since 1975
- Terabytes of patient claims in storage in Canberra
- Inappropriate Provider Practices (neural networks)
- Public Fraud (including doctor shoppers)
- Hot Spots: Cluster \Rightarrow Rule Induction \Rightarrow Interestingness

- Universal health coverage since 1975
- Terabytes of patient claims in storage in Canberra
- Inappropriate Provider Practices (neural networks)
- Public Fraud (including doctor shoppers)
- Hot Spots: Cluster \Rightarrow Rule Induction \Rightarrow Interestingness

Internal Fraud and Compliance

- Investigation of life factors as determinants of compliance
- Boosted Tree Stumps (Bartlett, Baxter, Milne, Williams, 1999)

If Age > 40 Then Non Compliant (0.3)

If MStatus Separated Then Non Compliant (0.8)

- Multiple agents
- Simple agents
- Working together!

· 由下 (母下 (母下 (母下) 母)님

DATA STREAMS

DATA MINING

Moving Forward O OO

Variation in Clinical Outcomes

Hybrid Intelligent Systems 2003

► < □ ► < □ ► < □ ► < □ ► < □ ► </p>
Copyright (© 2003, Graham J, Williams

Evolving Interesting Rules

- HotSpots searches for *interesting* regions described by rules
- \bullet So, evolve ${\cal R}$ using interestingness as measure of fitness
- Unlike rule induction, accuracy and coverage are not the goal
- Interestingness components: size, statistical profile, density.

Revolver

- Crossover, mutation, islands, migration strategies
- Fitness:

$$fit(r_i) = \frac{Max\{\mu_{r_i}(A_3),\mu_{r_i}(A_{12}),\mu_{r_i}(A_{43})\}}{Max\{\mu(A_3),\mu(A_{12}),\mu(A_{43})\}} + \frac{\Omega_{r_i}(A_{65}=True)}{\Omega_{r_i}} + \frac{\Omega_{r_i}(A_{39}=Yes)}{\Omega_{r_i}} + \frac{\mu_{r_i}(A_{54})}{\mu(A_{54})} + \frac{1}{\chi(r_i)}$$

 $\mu(Att) \\ \mu_{r_i}(Att) \\ \Omega_{r_i} \\ \Omega_{r_i}(Cond) \\ \chi(r_i)$

mean value of the attribute over data set mean value over the subset r_i number of records in r_i satisfying *Cond* number of conditions in the rule r_i

Hybrid Intelligent Systems 2003

◆□ ▶ ◆酉 ▶ ◆臣 ▶ ◆臣 ▶ 重国 少久ペ Copyright © 2003, Graham J. Williams

Evolving Interestingness

- Interestingness difficult to formulate!
- Evolve measure of interestingness with fitness guided by expert selection:

Emergent Outliers

• Statistical Outliers with SmartSifter (Yamanishi, Takeuchi, Williams, Milne, 2002, 2004).

- Represent patient patterns using a statistical model
- On-line unsupervised learning of the model each time a new transaction is input using a discounting learning algorithm
- Score the transaction according to how much it changes the model.

Emergent Outliers

• Statistical Outliers with SmartSifter (Yamanishi, Takeuchi, Williams, Milne, 2002, 2004).

- Represent patient patterns using a statistical model
- On-line unsupervised learning of the model each time a new transaction is input using a discounting learning algorithm
- Score the transaction according to how much it changes the model.

Common Characteristics

- Transaction data, administrative data
- Patterns emerge as the data streams in
- Simple, conceptually independent, models
- Identify interesting patterns at any time, as they emerge.

- Health Insurance: Typical transaction processing
- Desire to identify fraud as it emerges
- Levels of checking:
 - Transaction level: claim matches age and gender
 - Patient level: childbirth less than 6 months apart
 - System level: collusion between patients and doctor

- Health Insurance: Typical transaction processing
- Desire to identify fraud as it emerges
- Levels of checking:
 - Transaction level: claim matches age and gender
 - Patient level: childbirth less than 6 months apart
 - System level: collusion between patients and doctor

Transactions

- Health Insurance: Typical transaction processing
- Desire to identify fraud as it emerges
- Levels of checking:
 - Transaction level: claim matches age and gender
 - Patient level: childbirth less than 6 months apart
 - System level: collusion between patients and doctor

- Health Insurance: Typical transaction processing
- Desire to identify fraud as it emerges
- Levels of checking:
 - Transaction level: claim matches age and gender
 - Patient level: childbirth less than 6 months apart
 - System level: collusion between patients and doctor

Challenges for Data Mining

For fraud, security, improving business processes:

- Source data generally arrives as transactions
- Thing of interest occurs at the entity and system level
- Thing of interest is usually not self revealing
- Patterns of interest are constantly changing
- Patterns of interest are generally unusual
- Service guarantee: rapid turnaround of service

Challenges for Data Mining

For fraud, security, improving business processes:

- Source data generally arrives as transactions
- Thing of interest occurs at the entity and system level
- Thing of interest is usually not self revealing
- Patterns of interest are constantly changing
- Patterns of interest are generally unusual
- Service guarantee: rapid turnaround of service
- Delivering results as soon as possible

Moving Forward 0 00

Data Streams

Data Supply Mining The Stream

Data Mining

Doing Data Mining Technology for Intelligent Data Mining Transactions to Systems

Moving Forward

Temporal Nature of Data Streams Ready, Efficient, Communicating Agents

Temporal Nature of Data

- Adverse Drug Reactions
 Ace Inhibitor Usage → Angioedema
- Ambulatory Care Sensitive Conditions
 Improved Primary Care → Decrease Hospitalisation
- Hormone Replacement Therapy Increased Risk of Breast Cancer Decreased Risk of Colorectal Cancer

Moving Forward o • 0

Hybrid Intelligent Systems

- Data mining systems based around agents
- Agents actively pursuing the streaming data
- Building their own models, monitoring change, communicating discoveries

Hybrid Intelligent Systems 2003

Mining the Data Stream

- Intelligent data mining is fundamentally hybrid
- Streaming data, emergent patterns, dynamic monitoring
- Streams are fundamentally temporal in nature
- Requirement for good enough answers, quickly
- Foundational developments in data mining are there
- Goal is a population of simple, communicating, data mining agents, monitoring data streams for trigger events, which need to be brought to the attention of the analysts.

Mining the Data Stream

- Intelligent data mining is fundamentally hybrid
- Streaming data, emergent patterns, dynamic monitoring
- Streams are fundamentally temporal in nature
- Requirement for good enough answers, quickly
- Foundational developments in data mining are there
- Goal is a population of simple, communicating, data mining agents, monitoring data streams for trigger events, which need to be brought to the attention of the analysts.

THANK YOU

Hybrid Intelligent Systems 2003

<
■ ト 4 昂 ト 4 臣 ト 4 臣 ト 臣 国 三 の Q @ Copyright @ 2003. Graham J. Williams

References

- On-line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms. Data Mining and Knowledge Discovery, Volume 8, 2004.
- Temporal Sequence Associations for Rare Events. (submitted)
- A Framework for Comparison in Temporal Sequence Clustering. (submitted)
- Temporal Event Mining of Linked Medical Claims Data. (DMAK-2003)
- Evolutionary Hot Spots Data Mining: An architecture for exploring for interesting discoveries. In Methodologies for Knowledge Discovery and Data Mining. Lecture Notes in Artificial Intelligence, Volume 1574, Springer-Verlag, 1999, (PAKDD-99).
- Combining decision trees: Initial results from the MIL algorithm. Artificial Intelligence Developments and Applications, Elsevier Science Publishers, Pages 273–289.

◆□ ▶ ◆酉 ▶ ◆臣 ▶ ◆臣 ▶ 重臣 少久で Convright © 2003, Graham I. Williams