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Abstract

The low occurrence rate of adverse drug reactions makes it difficult to identify
the risk factors from straightforward application of frequent pattern discovery in large
databases. In this paper, we are interested in developing a data mining strategy that
can fully utilize the information around rare events in sequence data in order to mea-
sure the multiple occurrences of patterns in the whole period of target and non-target
data. We define an interestingness measure which exploits the difference between fre-
quency of patterns in target and non-target sequence data. The proposed strategy
guarantees the easy generation of candidate patterns from the target sequence data by
applying existing association mining algorithms. Then these patterns can be evaluated
by comparing their frequency in the target and non-target data. We also propose a
ranking algorithm that takes into account both the rank of patterns as determined by
the interestingness measure and the support in the target population, which can prune
the patterns greatly and highlight more interesting results. Experimental results of a
case study on angioedema show the usefulness of the proposed approach.

1 Introduction

Adverse drug reactions (ADRs) occur infrequently but may lead to serious or life threaten-
ing conditions requiring hospitalisation. At present, adverse drug reactions resulting from
new medications and their interactions with other medicines, are often detected only if there
exists either dramatic or widespread reactions. When a new drug is introduced, it is likely
that unexpected side-effects will go unnoticed until a very substantial number of patients
have been adversely affected. Thus, systematic monitoring of health data to more quickly
identify possible ADRs is of financial and social importance. In general, the early detection
of unexpected adverse reactions relies on a local voluntary reporting system and collated
statistics from overseas agencies. The use of a population-based prescribing data set, such
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as the Pharmaceutical Benefits Scheme (PBS) data in Australia, linked to hospital admis-
sions data, would provide an opportunity to detect common and rare adverse reactions at
a much earlier stage. From a data mining prospective, the low occurrence rate of ADRs in
large databases often makes it difficult to identify the risk factors from a straightforward
application of frequent pattern discovery algorithm. The problem domain has the following
characteristics: (1) Primary interest lies in rare events amongst large datasets; (2) Factors
leading to rare adverse drug reactions include temporal drug exposure; (3) Rare events are
associated with a small proportion of patients yet all data for all patients are required to
assess the risk.

Often, we can not identify, in advance, appropriate hypotheses. For example, for adverse
drug reactions we usually have little prior knowledge on which drug or drug combinations
might lead to unexpected outcomes (while the expected outcomes have often already been
studied). Our aim is to discover temporal patterns associated with rare events that are
then further assessed for their possible relationship with adverse outcomes. In our previous
work [1], only the information in the time window before the first target event was considered
for the mining of temporal associations. In this paper, we are interested in developing a data
mining strategy that can fully utilize the information around rare events in sequence data.
The main contributions of this paper are as follows. A new interestingness measure based
on frequency of patterns is defined. Candidate patterns are generated from case sequences.
Finally, a collaborative ranking algorithm that can prune the patterns greatly is proposed
to highlight more interesting results.

The remainder of this paper is organised as follows. Section 2 reviews related work.
Section 3 presents formal definitions. Section 4 outlines the proposed algorithm. Section 5
describes the dataset used in our experiments and reports on some encouraging results.
Section 6 concludes the paper.

2 Related Work

Temporal patterns mining has drawn much attention in recent years [12, 11, 6]. Regarding
mining patterns for rare events, [16] describes timeweaver, a genetic algorithm based machine
learning system that predicts rare events by identifying predictive temporal and sequential
patterns. [19] provides an sequential pattern algorithm that can predict failures in databases
of plan executions. The framework proposed by [13] finds interesting patterns from a single
long temporal event sequence. In this paper, we are interested in handling more complicated
temporal sequences, namely the exposure and outcome sequences for disease and non-disease
entities, with the awareness of difference between inside and outside hazard windows.

Following the goal of understanding differences between several contrasting groups, [2]
introduces the emerging patterns mining. [18] uses anomaly detection algorithm to detect
groups with specific characteristics whose recent pattern of illness is anomalous relative to
historical patterns, but it limits itself to two items in a single rule. In contrast, the goal of
this paper is to explore temporal associations from large temporal sequences datasets.

The problem of large number of rules has been studied by many researchers [7, 5]. They
mainly prune off those qualitative or quantitative association rules that contain little extra
information as compared to their ancestors. Recently, [9] studies a modified Hedge algorithm
to address the pattern ordering problem by combining the rank information gathered from
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disparate sources. We present an effective collaborative ranking algorithm that takes into
account not only the rank of patterns by the interestingness measure but also the support
in the target population. The interestingness measure is also different from the general ones
reviewed by [14].

3 Problem Description

Let E =
{
εi

}
be a set of entities (patients). Suppose there is a database of sequences

D =
{
si =< (ei1, ti1), (ei2, ti2), ..., (eij, tij), ..., (eimi

, timi
) >

}
and for any si, ti1 ≥ TSTART

and timi
≤ TEND which means that all sequences are bounded in a constant time period

[TSTART , TEND]. We care about the occurrences of events called target events, which are user
specified hospitalisation events in our case. For these target events, we try to explore the
associations between these and other events, or to identify the high risk exposures associated
with the outcome. The population E is partitioned into two subsets T and T , where T are
the patients or entities that have at least one target event occurring within [TSTART , TEND]
and T is for the others.

Definition 1 〈(eip, tip), (ei,p+1, ti,p+1), ..., (eiq, tiq)〉 is a windowed segment of sequence si

with time window [ts, te] if ts ≤ tip ≤ ti,p+1 ≤ . . . ≤ tiq < te ≤ timi
, ti,p−1 < ts and ti,q+1 ≥ te,

w = te − ts, where w = te − ts is constant, and usually specified by a domain expert.

Definition 2 For sequence data D, p is defined as a windowed pattern if 1) It is a
conjunction (or ordered list)of items(drugs) 2) There exists at least one windowed segment
so that there is at least one occurrence of pattern p within in the windowed segment The
windowed segment is called a matched windowed segment of p.

To make an efficient search of possible associations for target events, we do not consider
all possible windowed patterns in D. We generate a candidate set of windowed patterns
directly from the sequences in T . The idea is to construct a sub-database DTw for T , i.e.
treat each windowed segment exactly prior to each target event (te is the time stamp of a
target event) as a transaction, and if there are multiple target events for a patient (entity),
non-overlapped windowed segments in si are considered. Namely, for each sequence of T , we
first scan from the start of sequence to get the first target event, then get the next target
event, and so on, if the window ending with it is not overlapped with its previous one.

Target events may appear in one sequence of a patient (entity) multiple times. For
simplicity, we impose a jump condition for target population, which can be illustrated
by Figure 1. For any si, in the search process of a pattern p, we use sliding windows event by
event according to the order of time stamps. It can be proved that any windowed segment
of si can be accessed in such a way [1]. We denote the start time stamp of the kth sliding
window as tSik. For si of any entity in T , each time tSi,k+1 will be set to the next consecutive
time stamp of si except that 1) p is matched in the current sliding window starting from tSik
and 2) tSik is the first time stamp in si that tSik ≥ tTij −w, where tTij is one of the time stamps
of target events. If this exception happens, tSi,k+1 will be set to the first time stamp in si that
tSi,k+1 ≥ tSik + w, i.e. jump a window ahead to continue the scan. We can make the following
definition of frequency and observation.
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Figure 1: Illustration of jump condition for target population

Definition 3 For the sequences of T , freqT (p) is the total number of matched windowed
segments under the jump condition for target population.

Observation 1. freqT (p) is equal to the total number of sequences in DTw for any win-
dowed pattern p generated from DTw.

This observation is useful because it enables us to generate a set of candidate windowed
patterns by using existing frequent patterns mining algorithms, say OPUS [15] used in this
paper. Similarly, we impose a jump condition for non-target population. For si of any
entity in T , each time tSi,k+1 will be set to the next consecutive time stamp of si except that 1)
p is matched in the current sliding window starting from tSik. If this exception happens(here
no second condition is specified as there is no any target events in the sequence), tSi,k+1 will
be set to the first time stamp in si that tSi,k+1 ≥ tSik +w, i.e. jump a window ahead to continue
the scan.

Definition 4 For the sequences of T , freqT (p) is the total number of matched windowed
segments under the jump condition for non-target population.

These two jump conditions ensure that for any si in D, the counted matched windowed
segments of p are not overlapped. Nonetheless, they are different for target and non-target
populations. To compare fairly the occurrences of a windowed pattern in the two populations,
we define another frequency metric.

Definition 5 For the sequences of T , freqT ′(p) is the total number of matched windowed
segments under the jump condition for non-target population.

In summary, freqT (p) provides a measure about how frequent p appears in non-overlapped
windows exactly prior to target events(called hazard windows). freqT ′(p) implies how fre-
quently p appears in non-overlapped windows without consideration of target events. It can
be derived that freqT (p) ≤ freqT ′(p). The higher the ratio of freqT (p) to freqT ′(p), there
should be more occurrences of p right in the hazard windows. Based on the above definitions
of frequencies, we define a discriminability measure to describe a temporal pattern asso-
ciated with target events, given the information of the whole sequences inside and outside
the hazard winows of target population and non-target populations as well.

discriminability(p) =
w

W

(
freqT ′(p)

|T |
− freqT (p)

|T |

)
freqT (p)

freqT ′(p)
(1)
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Input: Two datasets of all entities including their event sequences D and demographics, a window size w and study
period size W , a minimum support for target dataset and demographical rules R for generating sub-populations.
Output: Ranked patterns.
Method:

1. output=NULL;

2. for r ∈ R

3. T , T =PartitionPopulation(r) /*partition entities */

4. {p}, {freqT (p)} = GenPattern(D,T ,w,s0); /* generate candidate patterns and get freqT (p)*/

5. {freqT ′ (p)} = CountFreq(D, {p},T , w); /* counting patterns on target population again */

6. {freqT (p)} = CountFreq(D, {p},T , w); /* counting patterns on non-target population */

7. ranked-patterns = ColRank({p,freqT (p)}); /* collaborative ranking of patterns*/

8. output = output ∪ {ranked-patterns};

9. return output;

Figure 2: Pseudo code of the FREM algorithm

where the length of study period is W = TEND − TSTART , the estimated upper bounds of
freqT ′(p) and freqT (p) are |T |W/w and |T |W/w respectively. Also note that freqT (p) ≤
freqT ′(p), and

−1 ≤ discriminability(p) ≤ 1 (2)

Temporal patterns that are more likely to appear inside hazard windows rather than
outside hazard windows or in non-target populations will be highlighted through relative
higher positive values of this interestingness measure. For example, suppose w

W
(

freqT ′ (p)

|T | −
freqT (p)

|T | ) = 0.5 and freqT (p)
freqT ′ (p)

= 1, i.e. we have discriminability(p) = 0.5 which means that the

the frequency p appears in hazard windows is the same as the frequency it appears without
the limitation of hazard windows, and the normalised difference of frequency of p in target
and non-target population is as high as 0.5. Thus it might be of our interest for mining
temporal patterns associated with target events. In principle, this interestingness measure
has incorporated both the support and strength of a pattern.

4 Frequency-Based Windowed Patterns Mining Algo-

rithm

Figure 2 illustrates the framework of our Frequency-Based Rare Events Mining (FREM)
algorithm.

We first partition the whole population according to their demographics and hospitalisa-

tion situations with respect to the target disease. Then we generate candidate patterns from

DTw of the target populations. Both existence patterns, which ignore the order of events,

and sequential patterns algorithms can be integrated in GenPattern. The counting of these

patterns in T needs an efficient algorithm due to the large number of non-target patients.

Thus, we design an efficient algorithm for the existence patterns in CountFreq, which is il-

lustrated in Figure 3. Here the general idea is to update the dynamic data structure for the

partially matched items of a pattern, dropping outdated, partially matched items when the
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Input: {p}, sequences of T or T
Output: freqT ′ (p) or freqT (p)
Method:

1. Patterns = PreselectPatterns({p}, sequence si);

2. Patterns.PartiallyMatched = Null;

3. IndexCurrentEvent = ValidSlidingWindow.start = 0;

4. Patterns.LastMatched = −∞

5. while ValidSlidingWindow :

6. Patterns.PartiallyMatched.drop();

7. if IndexCurrentEvent - ValidSlidingWindow.start < w :

8. IndexCurrentEvent += 1;

9. else: break

10. if Patterns.PartiallyMatch():

11. Patterns.PartiallyMatched.update();

12. if ValidSlidingWindow.start - Patterns.LastMatched > w:

13. if Patterns.MatchedCheck():

14. Patterns.count += 1;

15. Patterns.LastMatched = ValidSlidingWindow.start;

16. ValidSlidingWindow.start += 1;

17. return Patterns.count;

Figure 3: Pseudo code of CountFreq algorithm

sliding window updates. Moreover, PreselectPatterns uses the set difference between pattern

and sequence so as to save the search for the pattern that can not appear in the sequence.

In our experiment, this algorithm is over five times faster than a intuitive counting process

without these optimisations.

Since there are usually many patterns with high discriminability values. We need to

highlight the most interesting ones for further investigation.Usually the patterns are ranked

by their interestingness measures. Our idea of ranking interesting patterns is to take into

account both the interestingness measure and frequency of patterns in the target population.

We propose a pruning condition for the collaborative ranking to shortlist interesting patterns.

freqT (p1) ≥ freqT (p2) (3)

but

discriminability(p1) ≤ discriminability(p2) (4)

and

intersection(p1, p2) 6= φ (5)

It means that a pattern p1 will be pruned if the frequency of p1 in DTw is greater than or

equal to any pattern p2 with the same or higher interestingness measure and p1 and p2 also

6



Input: {p,freqT (p), discriminability(p)}
Output: Ranked patterns
Method:

1. PatternsSorted = SortByDiscriminability({p,discriminability(p)});

2. RankedPatternsSoFar = Null;

3. for p in PatternsSorted:

4. if p intersect with x in RankedPatterSoFar:

5. if freqT (p) ≥ freqT (x):

6. prune(p);

7. else:

8. RankedPatternsSoFar.append(p);

9. else:

10. RankedPatternsSoFar.append(p);

11. return RankedPatternsSoFar;

Figure 4: Pseudo code of ColRank algorithm

have common items. Equation 5 can prevent excluding some potential signals from consider-

ation, and achieve the goal of improving the chance of detection of most significant patterns.

The ranking algorithm ColRank given in Figure 4 will do the pruning process according to

this condition. Experiment result in the next section will show that the algorithm can reduce

the number of patterns substantially.

5 Mining on Real Health Data: A Case Study

The Queensland Linked Data Set [17] links hospital admissions data from Queensland Health

with the pharmaceutical prescription data from Commonwealth Department of Health and

Ageing, providing a de-identified dataset for analysis. The record for each patient includes

demographic variables and a sequence of PBS and hospitalisation events. Two datasets are

extracted. One contains all 400 patients with hospital admissions due to angioedema 1(the

target event). The other contains 682,958 patients who have no angioedema hospitalisations.

We stratify the population into age and gender groups. The study period is four years from

1995 to 1999, and we choose a hazard window of 180 days as suggested by contributing

medical experts.

We used our FREM algorithm on this data set. The ranked interesting patterns for the

female and male aged 60+ cohorts are shown in Table 1 and 2 respectively. The minimum

support for the generation of candidate patterns for both cohorts is 8%. Here we only con-

sider patterns involving two drugs at a time, to make results easier to interpret. Note that

1Angioedema is a swelling (large welts or weals), that occurs beneath the skin rather than on the sur-
face [10]. There are a number of case series in the literature demonstrating that ACE inhibitors-related
angioedema is responsible for as many as 40% of angioedema episodes [10].
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No. discriminability(p) freq
T

(p) freqT (p) Pattern

1 0.0179 30418 22 C09AA G03CA
4 0.0094 13714 11 G03CA C03CA
5 0.0084 53844 16 C09AA N05CD
6 0.0078 44251 14 C09AA C07AB
7 0.0078 40426 13 C09AA R03AC
10 0.0072 67019 15 N02BE C01DA
12 0.0069 25141 10 G03CA N05CD
15 0.0068 55186 14 C03CA C01DA
17 0.0066 26598 11 J01DA H02AB
18 0.0065 31011 11 C03CA C08CA
19 0.0065 24707 11 C09AA M01AB
22 0.0062 39230 12 N05CD C01DA
28 0.0059 21250 10 C01DA J01FA
34 0.0053 37728 10 C08CA C07AB
40 0.0049 28612 10 C09AA J01CA
41 0.0047 41997 10 A02BA N06AA
49 0.0039 55912 13 N02BE R03AC
55 0.0037 44154 10 C03CA A12BA
57 0.0037 41958 10 J07BB R03AC
60 0.0035 73093 10 N02BE J01DA

Table 1: Ranked patterns for females aged 60+ (|T |/|T | for this cohort is 101/12858

No. discriminability(p) freq
T

(p) freqT (p) Pattern

1 0.0125 54782 12 C09AA C03CA
3 0.0118 46736 11 C09AA C08CA
7 0.0108 66975 13 A02BA N02BE
17 0.0092 18097 7 N05CD R03BA
21 0.0082 25253 6 R03AC N02AA
26 0.0079 17578 6 N05CD D07AC
32 0.0077 16351 5 C08CA D07AC
37 0.0069 8873 5 J01CA A03FA
42 0.0064 25958 6 H02AB R03BA
53 0.0057 35041 5 J07BB C01DA
55 0.0055 18106 5 N05CD C07AB
71 0.0042 33191 5 N02BE R03BA
73 0.0033 26361 5 A02BA H02AB

Table 2: Ranked patterns for males aged 60+ (|T |/|T | for this cohort is 53/102796)

the “No.” in tables denotes the order of a pattern sorted by their discriminabilities. The

number of resulting patterns have been reduced from 79 and 77 to 20 and 13 for the two

cohorts, respectively. Among these ranked patterns, ACE inhibitors(ATC 2 code: C09AA)

has appeared as the most interesting drug in both tables, which is consistent with the knowl-

edge of medical practitioners. The first pattern in Table 1 is “C09AA G03CA”, which means

the combination usage of ACE inhibitors and estrogen within 180 days is highly associated

with the occurrence of angioedema. This result is consistent with our previous discovery

in [1]. For males aged 60+, the most interesting pattern “C09AA C03CA” suggests that the

combination usage of ACE inhibitors and Sulfonamides, Plain within 180 days is highly as-

sociated with the occurrence of angioedema reactions. Interestingly, Furosemide (C03CA01)

as one sub-categorty of Sulfonamides, Plain has been reported to cause acute reaction of

angioedma [3, 4].Amlodipine besylate (C08CA01) as one sub-categorty of Dihydropyridine

derivatives (C08CA) has been reported to cause allergic reactions including pruritis, rash,

angioedema and erythema multiforme [8].

2This uses the Anatomical Therapeutic Chemical (ATC) classification system
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6 Discussion and Conclusions

We have defined an interestingness measure which exploits the difference of frequency of

patterns in target and non-target sequence data, so that multiple occurrences of patterns

in the whole period of target and non-target data can be measured. The proposed strategy

guarantees the generation of candidate temporal patterns from the target sequence data

by integrating conventional frequent pattern mining algorithms. Then, these patterns can

be evaluated in conjunction with the frequency of them in non-target data. We have also

proposed a collaborative ranking algorithm that takes into account both the rank of patterns

by the interestingness measure and the support in the target population, which can prune

the patterns greatly and highlight more interesting results. The experimental results by

using an efficient counting algorithm on real health data show the usefulness of the proposed

approach. This paper can be extended in a variety of aspects. For example, we can consider

drug prescription events rather than hospitalization events as target events for our ongoing

work. We suggest this framework could be applied to other applications where mining

temporal sequences of contrast entities is of interest.
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