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Abstract. We consider the problem of finding outliers in large multi-
variate databases. Outlier detection can be applied during the data cleans-
ing process of data mining to identify problems with the data itself, and
to fraud detection where groups of outliers are often of particular inter-
est. We use replicator neural networks (RNNs) to provide a measure of
the outlyingness of data records. The performance of the RNNs is as-
sessed using a ranked score measure. The effectiveness of the RNNs for
outlier detection is demonstrated on two publicly available databases.

1 Introduction

Outlier detection algorithms have application in several tasks within data min-
ing. Data cleansing requires that aberrant data items be identified and dealt
with appropriately. For example, outliers are removed or considered separately
in regression modelling to improve accuracy. Detected outliers are candidates
for aberrant data. In many applications outliers are more interesting than in-
liers. Fraud detection is a classic example where attention focuses on the outliers
because these are more likely to represent cases of fraud. Fraud detection in in-
surance, banking and telecommunications are major application areas for data
mining. Detected outliers can indicate individuals or groups of customers that
have behaviour outside the range of what is considered ‘normal’ [8, 6, 21].

Studies from the field of statistics have typically considered outliers to be
residuals or deviations from a regression or density model of the data:

An outlier is an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mecha-
nism [9].

In this paper we employ multi-layer perceptron neural networks with three
hidden layers, and the same number of output neurons and input neurons, to
model the data. These neural networks are known as replicator neural networks
(RNNs). In the RNN model the input variables are also the output variables so
that the RNN forms an implicit, compressed model of the data during training.
A measure of outlyingness of individuals is then developed as the reconstruc-
tion error of individual data points. The RNN approach has linear analogues in
Principal Components Analysis [10].



The insight exploited in this paper is that the trained neural network will
reconstruct some small number of individuals poorly and these can be considered
as outliers. We measure outlyingness by ranking data according to the magnitude
of the reconstruction error. This compares to SmartSifter [22] which similarly
builds models to identify outliers but scores the individuals depending on the
degree to which they perturb the model.

Following [22], [4] and [17] when dealing with large databases, we consider
it more meaningful to assign each datum an outlyingness score. The continuous
score reflects the fuzzy nature of outlyingness and also allows the investigation
of outliers to be automatically prioritised for analysis.

2 Related Work

We classify outlier detection methods as either distribution-based or distance-
based. However, a probabilistic interpretation can often be placed on the distance-
based approaches and so the two categories can overlap. Other classifications of
outlier detection methods are based on whether the method provides an out-
lyingness score or a binary predicate (which may also be based on a score), or
whether the method measures outlyingness from the bulk (i.e., a convex hull)
of the data, or from a regression surface. Distribution-based methods include
mixture models such as SmartSifter [22]. Individuals are scored according to
the degree to which they perturb the currently learnt model. Distance-based
methods use distance metrics such as Mahalanobis distance [2, 15] or Euclidean
distance [11, 13, 12]. A prominent and useful technique for detecting outliers
is to use a clustering algorithm, such as CURE or BIRCH, and then designate
data occurring in very small clusters, or data distant from existing clusters as
outliers [16, 21, 7, 23, 14]. Visualisation methods [3], based on grand tour projec-
tions, can also be considered distance-based since the distance between points is
projected onto a 2-dimensional plane. Visualisations using immersive virtual en-
vironments [20] similarly explore the space for outliers allowing users to identify
and view outliers in multiple dimensions. Despite the obvious issues of subjec-
tiveness and scaling, visualisation techniques are very useful in outlier detection.
Readily available visualisation tools such as xgobi [18] provide an effective, ef-
ficient, and interactive initial exploration of outliers in data (or necessarily a
sample of the data). We are aware of only one other previous neural network
method approach to detecting outliers [19]. Sykacek’s neural network approach
is to use a multi-layer perceptron (MLP) as a regression model and to then treat
outliers as data with residuals outside the error bars.

3 Replicator Neural Network Outlier Detection

Although several applications in image and speech processing have used the
Replicator Neural Network for its data compression capabilities [1, 10], we believe
the current study is the first to propose its use as a outlier detection tool.



As mentioned in Section 1, the RNN is a variation on the usual regression
model. Normally, input vectors are mapped to desired output vectors in multi-
layer perceptron neural networks. For the RNN, however, the input vectors are
also used as the output vectors; the RNN attempts to reproduce the input pat-
terns in the output. During training, the weights of the RNN are adjusted to
minimise the mean square error (or mean reconstruction error) for all training
patterns. As a consequence, common patterns are more likely to be well repro-
duced by the trained RNN so that those patterns representing outliers will be less
well reproduced by a trained RNN and will have a higher reconstruction error.
The reconstruction error is used as the measure of outlyingness of a datum.

3.1 RNN

The RNN we use is a feed-forward multi-layer perceptron with three hidden
layers sandwiched between an input layer and an output layer. The function of
the RNN is to reproduce the input data pattern at the output layer with error
minimised through training. Both input and output layers have n units, corre-
sponding to the n features of the training data. The number of units in the three
hidden layers are chosen experimentally to minimise the average reconstruction
error across all training patterns. Heuristics for making this choice are discussed
later in this section. Figure 1 shows a schematic view of the fully connected
Replicator Neural Network. The output of unit i of layer k is calculated by the
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Fig. 1. A schematic view of a fully connected Replicator Neural Network.

activation function Sk(Iki), where Iki, denoted generically as θ, is the weighted
sum of the inputs to the unit and defined as:

θ = Iki =
Lk−1∑
j=0

wkijZ(k−1)j (1)

Zkj is the output from the jth unit of the kth layer. Lk is the number of units
in the kth layer.

The activation function for the two outer hidden layers (k = 2, 4) is then:

Sk(θ) = tanh(akθ) k = 2, 4 (2)

where ak is a tuning parameter which is set to 1 for our experiments. For the
middle hidden layer (k = 3), the activation function is staircase like with pa-
rameter N as the number of steps or activation levels and a3 controlling the



transition rate from one level to the next:

S3(θ) =
1
2

+
1

2(k − 1)

N−1∑
j=1

tanh[a3(θ −
j

N
)] (3)

With a3 set to a large value (we use a3 = 100 throughout this work) and N = 4
the resulting activation function is shown in Figure 2. The activation levels of
the hidden units are thus quantised into N discrete values: 0, 1

N−1 , 2
N−1 , . . . 1.

The step-wise activation function used for the middle hidden layer divides the

(θ )S3 

θ

Fig. 2. Activation function of the units in the middle hidden layer.

continuously distributed data points into a number of discrete valued vectors.
Through this mechanism data compression is achieved. The same architecture is
adopted in this work for outlier detection. The mapping to the discrete categories
in the middle hidden layer naturally places the data points into a number of
clusters. The outliers identified by the RNN can be analysed further to identify
individual outliers and small clusters. We discuss this further in later sections.

Training the RNN. We choose one of two candidate functions as the activation
function for the output layer. The first is linear and is the weighted sum of the
inputs using the formula in Equation 1, so that S5(θ) = θ. The second is the
Sigmoid function:

S5(θ) =
1

1 + e−a5θ
(4)

We use an adaptive learning rate for training the neural network at each iteration
level, l . The weights in the neural network are updated using:

wl+1
ij = wl

ij + αl+1∆wl+1
ij (5)

The new learning rate at iteration l + 1, αl+1 is given by:

αl+1 =

βr ∗ αl if el+1 > 1.01 ∗ el (undo weight update)
βe ∗ αl if el+1 < el and αl < αmax

αl otherwise
(6)



Where el in equation 6 refers to the mean square error.

el =
1

mn

M∑
i=1

n∑
j=1

(xij − ol
ij)

2 (7)

In Equation 7, m is the number of records in the training set, n is the number
of features, and xij is the input value and is also the targeted output value
(i = 1, 2, . . . ,m, j = 1, 2, . . . , n) and ol

ij is the value of the output from the RNN
for the lth iteration. The Initial Learning Rate, α0, the Maximum Learning
Rate, αmax, the Learning Rate Enlargement Factor, βe, and the Learning Rate
Reduction Factor, βr, are adjustable parameters.

In our experiment of Section 4, we use the fixed settings shown in Table 1.
. For convergence some data sets require adjustment to the training parameters

α0 Initial Learning Rate 0.0001
αmax Maximum Learning Rate 0.02
βe Learning Rate Enlargement Factor 1.005
βr Learning Rate Reduction Factor 0.98

Table 1. Parameter values used for updating the learning rate.

and the number of units in the RNN architecture. Furthermore, in the experi-
ments to be discussed in Section 4 we use different numbers of hidden units for
different data sets, ranging over 15, 35, 40, and 45. Increasing the number of hid-
den units increases training time but convergence is more likely. The success of
training is evaluated by the average reconstruction error. It is not very sensitive
to most parameters, a few experiment may be needed in choosing the values of
a couple of parameters to guarantee the convergence of the error.

3.2 Methodology for applying RNN to Outlier Detection

We now describe the measure of outlyingness, the treatment of categorical vari-
ables, and the sampling scheme for large data sets.

Outlier Factor (OF ) We define the Outlier Factor of the ith data record OFi as
our measure of outlyingness. OFi is defined by the average reconstruction error
over all features (variables)

OFi =
1
n

n∑
j=1

(xij − oij)2 (8)

where n is the number of features. The OF is evaluated for all data records using
the trained RNN.

Categorical Variables For datasets with categorical variables, we split the dataset
into a number of subsets, each corresponding to a set of particular values of the
categorical variables. For example, if we have two categorical variables each with
two categories, we split the data set into four disjoint subsets each corresponding



to the unique combination of values of the two categorical variables. We then
train an RNN for each subset individually. This is not an optimal way of treating
categorical variables and a better method is being developed.

Sampling and Training For each subset Ci, we sample a portion of data either
randomly or by selecting every nth record to train the RNN.

Applying the Trained RNN The trained RNN is used to calculate OFi for all
data points.

4 Experimental Results

We demonstrate the effectiveness of the RNN as an outlier detector on three
data sets.

4.1 Network Intrusion Detection

We apply the RNN approach to the 1999 KDD Cup network intrusion detection
data set [5]. Each event in the original data set of nearly 5 million events is
labelled as an intrusion or not an intrusion. This class label is not included when
training the RNN but is used to assess the RNN’s performance in identifying
intrusions. In summary we show that RNN outlier detection over the network
intrusion data effectively identifies those events that are intrusions.

We follow the experimental technique employed in [22]. There are 41 at-
tributes in the 1999 KDD Cup data set. There are 34 numerical variables and 7
categorical variables. The categorical variable attack originally had 22 distinct
values (normal, back, buffer overflow etc.). We map these 22 distinct values to a
binary categorical variable by mapping all values, except normal, to attack. We
use four of the 41 original attributes (service, duration, src bytes, dst bytes) be-
cause these attributes are thought to be the most important features [22]. Service
is a categorical feature while the other three are continuous features. There are
41 original categories of service which are mapped into five categorical values:
http, smtp, ftp, ftp data, and others. Since the continuous features were concen-
trated around 0, we transformed each continuous feature by the log-transform
y = log(x+1.0) for some subset. The original data set contained 4,898,431 data
records, including 3,925,651 attacks (80.1%). This high rate is too large for at-
tacks to be considered outliers. Therefore, following [22] we produced a subset
consisting of 703,066 data records including 3,377 attacks (0.48%). The subset
consists of those records with logged in being positive. Attacks that successfully
logged in are called intrusions.

Sampling The data set is then divided into five subsets according to the five
values of service. The aim is to identify intrusions within each of the categories
by identifying outliers using the RNN approach. For the smaller of the resulting
subsets (other contained 5858 events and ftp contained 4091 events) all of the



events were used to train the corresponding RNN. The subsets for http, smtp and
ftp-data are considerably larger and were sampled in order to train the corre-
sponding RNN within a feasible time. Note that scoring events for outlyingness
is considerably more efficient than training and thus the trained RNN can be
rapidly applied to very large datasets to score each event. The subsets were ob-
tained by sampling every nth record from the data so that the subsets would be
no larger than about 6K records. Details of the resultant training sets are listed
in Table 2.

Service Events Intrusions Proportion Sample Sample Proportion
Intrusions Intrusions

http 567497 2211 3.9% 5674 22 0.4%
smtp 95156 30 0.3% 5597 4 0.1%
ftp-data 30464 722 2.4% 5077 122 2.4%
other 5858 98 1.7% 5858 98 1.7%
ftp 4091 316 7.7% 4091 316 7.7%

Total 703066 3377 0.5% 26297 562 2.1%

Table 2. Summary counts of the five KDD Cup data subsets used to train each of the
RNNs.

Training of the RNN The training parameters used to train the five RNNs are
listed in Table 3. The choices in the training parameters were made empirically to
guarantee the convergence of the mean reconstruction error to a lowest possible
value for the training set.

Parameter http smtp ftp-data other ftp

Number of activation function steps 4 4 4 4 4
Log Transform of Continuous Features Yes Yes No Yes No
Output Layer Activation Function Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid
Number of Units: Hidden Layer 1 35 40 40 40 45
Number of Units: Hidden Layer 2 3 3 3 3 3
Number of Units: Hidden Layer 3 35 40 40 40 45
Number of Iterations 1000 40000 10000 10000 40000

Table 3. Parameter values for training the RNNs on kddcup network intrusion data.

Results The trained RNN is used to score each event with the value of OF . The
data can then be reordered in descending order of OF . The records ranked higher
are expected to be more likely intrusions. Figure 3 shows the overall ratio of the
coverage of the intrusions plotted against the percentage of the data selected
when ordered by OF . The combined result gives the overall performance of the
outlier detector.

Best results are obtained for service type http, which has the highest num-
ber of intrusions. Indeed, the top one percent of the ranked records contains
all intrusions. In other words, all 2211 intrusions are included in the top 5670
patterns, identifying a small data subset which has a significant proportion of
outliers.

Table 4 lists the distribution of all the patterns in the codebook (identifying
clusters through combination of values) of the middle hidden layer. There are
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Fig. 3. Ratio of detected intrusions found by the RNN method

NL3 = 43 = 64 possible codes (i.e., clusters) in the middle hidden layer. Only
ten of these are non-empty clusters. It is clearly visible that cluster 48 has 2202
(99.6%) intrusion cases and only 31 normal cases. All other clusters have only
normal cases (except cluster 51, which has only one intrusion cases).

Cluster Middle hidden layer output Total normal attack
Index Neuron 1 Neuron 2 Neuron 3 Records Records Records

0 0 0 0 21137 21131 6
1 0 0 1 103 102 1
2 0 0 2 409 408 1

16 1 0 0 539448 539448 0
17 1 0 1 50 50 0
18 1 0 2 2 2 0
32 2 0 0 4105 4105 0
48 3 0 0 2233 31 2202
49 3 0 1 9 9 0
51 3 0 3 1 0 1

Table 4. Results for http, according to middle hidden layer output

4.2 Wisconsin Breast Cancer Dataset

The Wisconsin breast cancer data set is found in the UCI machine learning
repository[5]. The dataset contains nine continuous attributes. Each record is
labelled as benign (458 or 65.5%) or malignant (241 or 34.5%). We removed
some of the malignant records to form a very unbalanced distribution for testing
the RNN outlier detection method. When one in every six malignant records
was chosen, the resultant data set had 39 (8%) malignant records and 444 (92%)
benign records. The results are shown in Table 5. Within the top 40 ranked cases
(ranked according to the Outlier Factor), 30 of the malignant cases (the outliers),
comprising 77% of all malignant cases, were identified. There are 25 non-empty
clusters out of 64 possible codes. Among the non-empty clusters eleven of them
(0-15) form a super cluster. The common characteristic of this super cluster is
that the output from the first neuron is 0. There are 53 records in this cluster and
36 of them are malignant cases (outliers). We can categorise this super cluster
as an outlier cluster with 68% (36/53) confidence. On the other hand, the other



three super clusters (where output from the first neuron of the middle hidden
layer is 1, 2, and 3 respectively) contains mostly inliers.

Top % Number of Number of % of Top % Number of Number of % of
of record malignant record malignant of record malignant record malignant

0 0 0 0.00 12 35 48 89.74
1 3 4 7.69 14 36 56 92.31
2 6 8 15.38 16 36 64 92.31
4 11 16 28.21 18 38 72 97.44
6 18 24 46.15 20 38 80 97.44
8 25 32 64.10 25 38 100 97.44
10 30 40 76.92 28 39 112 100.00

Table 5. Results for Wisconsin breast cancer data according to outlier factor

5 Discussion and Conclusions

We have presented an outlier detection approach based on Replicator Neural
Networks (RNN). An RNN is trained from a sampled data set to build a model
that predicts the given data. We use this model to develop a score for outlying-
ness (called the Outlier Factor) where the trained RNN is applied to the whole
data set to give a quantitative measure of the outlyingness based on the recon-
struction error. Our approach takes the view of letting the data speak for itself
without relying on too many assumptions. SmartSifter, for example, assumes a
mixed Gaussian distribution for inliers. Distance-based outlier methods use a
chosen distance metric to measure the distances between the data points with
the number of clusters and the distance metric preset. The RNN approach also
identifies cluster labels for each data record. The cluster label can often help
to interpret the resulting outliers. For example, outliers are sometimes found to
be concentrated in a single cluster (as in service type http of the KDD99 in-
trusion data) or in a group of clusters with common characteristics (as in the
Wisconsin breast cancer data). The cluster label not only enables the individuals
to be identified as outliers but also groups to identified as being outliers, as in
[21]. We have demonstrated the method on two publicly available data sets. To
test the accuracy of the method datasets with unbalanced distributions two or
more classes were selected. The RNN was able to identify outliers (small classes)
without using the class labels with high accuracy in both datasets. A paper
comparing the RNN with other outlier detection methods is in preparation.
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